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Notation

@ G - simple graph
@ E(G) - the edge set of G, m = |E(G)]
e V/(G) - the vertex set of G, n = |V(G)|
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G - simple graph

E(G) - the edge set of G, m = |E(G)|

V(G) - the vertex set of G, n= |V(G)|
Maximum degree: A(G), minimum degree: §(G)
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Notation

G - simple graph

E(G) - the edge set of G, m = |E(G)|

V(G) - the vertex set of G, n= |V(G)|
Maximum degree: A(G), minimum degree: §(G)

G - Abelian group, for convenience: 0, 2a, —a, a—b. ..
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s(G): Definition

Assign positive integer w(e) < s to every edge e € E(G).
@ For every vertex v € V(G) the weighted degree is defined as:
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@ For every vertex v € V(G) the weighted degree is defined as:

esv

e w is irregular if for v # u we have wd(v) # wd(u).
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s(G): Definition

Assign positive integer w(e) < s to every edge e € E(G).
@ For every vertex v € V(G) the weighted degree is defined as:

esv

e w is irregular if for v # u we have wd(v) # wd(u).

o Irregularity strength s(G): the lowest s that allows some
irregular labeling.
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s(G): Definition

Assign positive integer w(e) < s to every edge e € E(G).
@ For every vertex v € V(G) the weighted degree is defined as:

esv

e w is irregular if for v # u we have wd(v) # wd(u).

o Irregularity strength s(G): the lowest s that allows some
irregular labeling.

@ Introduced by G. Chartrand, M.S. Jacobson, J. Lehel, O.R.
Oellermann, S. Ruiz, F. Saba, 1988.
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s(G): Some results

@ Lower bound:

n; + i—1
s(G) > max
1<i<A 1
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Introduction

s(G): Some results

@ Lower bound:

@ Best upper bound (M. Kalkowski, M. Karonski, F. Pfender,
2009):

5(6) < [65”}
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Introduction th

ith Abelian Groups

s(G): Some results

@ Lower bound:

@ Best upper bound (M. Kalkowski, M. Karonski, F. Pfender,
2009):

5(6) < [65”}

e Exact values for some families of graphs (e.g. cycles, grids,
some kinds of trees, circulant graphs).
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es(G): Definition

Assign positive integer w(v) < s to every vertex v € V(G).
@ For every edge e = uv € E(G) the weight is defined as:

wd(uv) = w(u) + w(v).
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Introduction

es(G): Definition

Assign positive integer w(v) < s to every vertex v € V(G).
@ For every edge e = uv € E(G) the weight is defined as:

wd(uv) = w(u) + w(v).

@ w is irregular if for every two edges e # f we have

wt(e) # wt(f).
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Introduction

es(G): Definition

Assign positive integer w(v) < s to every vertex v € V(G).
@ For every edge e = uv € E(G) the weight is defined as:
wd(uv) = w(u) + w(v).

@ w is irregular if for every two edges e # f we have
wt(e) # wt(f).

o Edge Irregularity Strength es(G): the lowest s that allows
some irregular labeling.
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Introduction

Group Irregularity Strength

es(G): Definition

Assign positive integer w(v) < s to every vertex v € V(G).
@ For every edge e = uv € E(G) the weight is defined as:

wd(uv) = w(u) + w(v).

@ w is irregular if for every two edges e # f we have
wt(e) # wt(f).

o Edge Irregularity Strength es(G): the lowest s that allows
some irregular labeling.

@ Introduced by A. Ahmad, O. Bin Saeed Al-Mushayt, M. Bat&a,
2014.
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es(G): Some results

@ Lower bound:
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es(G): Some results

@ Lower bound:
es(G) > max{m2,A(G)}
@ Best upper bound:
es(G) < Fp,

where F,, is the nt" Fibonacci number with seed values
Fi=1F=2.
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Introduction

es(G): Some results

@ Lower bound:
es(G) > max{m2,A(G)}
@ Best upper bound:
es(G) < Fp,

where F,, is the nt" Fibonacci number with seed values
Fi=1F=2.

@ Exact values for some families of graphs (paths, cycles, stars,
double stars, grids).
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Labellings with finite Abelian groups

Introduction

@ Harmonious graphs (Graham and Sloane, Beals et al., Zak).
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Introduction

Group Irregularity Strength

Labellings with finite Abelian groups

@ Harmonious graphs (Graham and Sloane, Beals et al., Zak).

e A-cordial labellings (Hovey).
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Introduction

Group Irregularity Strength

Labellings with finite Abelian groups

@ Harmonious graphs (Graham and Sloane, Beals et al., Zak).
e A-cordial labellings (Hovey).
e Edge-magic total labellings (Cavenagh et al.).
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Introduction

Labellings with finite Abelian groups

Harmonious graphs (Graham and Sloane, Beals et al., Zak).
A-cordial labellings (Hovey).
Edge-magic total labellings (Cavenagh et al.).

Group distance magic graphs (Froncek).
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Introduction

Group Irregularity Strength

Labellings with finite Abelian groups

Harmonious graphs (Graham and Sloane, Beals et al., Zak).

A-cordial labellings (Hovey).

o
o
e Edge-magic total labellings (Cavenagh et al.).
e Group distance magic graphs (Froncek).

o

Vertex-antimagic edge labellings (Kaplan et al.).
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sz(G): Definition

Assign the element of an Abelian group G of order s to every edge
e € E(G).
e For every vertex v € V(G) the weighted degree is defined as:
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sz(G): Definition

Assign the element of an Abelian group G of order s to every edge
e € E(G).
e For every vertex v € V(G) the weighted degree is defined as:

esv

e w is G-irregular if for v # u we have wd(v) # wd(u).
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Introduction

sz(G): Definition

Assign the element of an Abelian group G of order s to every edge
e € E(G).
e For every vertex v € V(G) the weighted degree is defined as:

esv

e w is G-irregular if for v # u we have wd(v) # wd(u).

o Group irregularity strength s;(G): the lowest s such that
for every Abelian group G of order s there exists G-irregular
labelling of G.
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Introduction

sz(G): Some Results

Theorem (Anholcer, Cichacz, Milanig, 2015)
Let G be arbitrary connected graph of order n > 3. Then

n+2 when G = Kj 30411_5 for some integer g > 1
sg(G)=qn+1 whenn=2 (mod 4) A G % Kj 32441 _

n otherwise

Other results (Anholcer, Cichacz, 2015+ ): slightly weaker theorem
for disconnected graphs, including the results for cyclic groups.
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esg(G): Definition

Assign the element of an Abelian group G of order s to every
vertex v € V(G).

@ For every edge e = uv € E(G) the weight is defined as:

wd(uv) = w(u) + w(v).
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Group Edge Irregularity Strength Results

esg(G): Definition

Assign the element of an Abelian group G of order s to every
vertex v € V(G).

@ For every edge e = uv € E(G) the weight is defined as:
wd(uv) = w(u) + w(v).

e w is G-edge irregular if for e # f we have wd(e) # wd(f).
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Definition
Group Edge Irregularity Strength Results

esg(G): Definition

Assign the element of an Abelian group G of order s to every
vertex v € V(G).

@ For every edge e = uv € E(G) the weight is defined as:

wd(uv) = w(u) + w(v).

e w is G-edge irregular if for e # f we have wd(e) # wd(f).

e Group edge irregularity strength es;(G): the lowest s such
that for every Abelian group G of order s there exists G-edge
irregular labelling of G.
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Group Edge Irregularity Strength Results

Lower Bounds

Proposition
For each graph G, esg(G) > m.

The above bound is sharp, as e.g. the example of Kg shows.
Computational evidence shows also that even cyclic groups Z(n)

2
are not enough to label K, for various n > 6.
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General Upper Bound

Proposition

For each graph G, esg(G) < p(2F,), where p(k) is the least prime
greater than k and F,, is the nth Fibonacci number with seed
values F1 =1, F, = 2.
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Proposition

For each forest F, es;(F) = m. Moreover, any weighting of edges
is possible for arbitrary choice of labels of one vertex in each
component.

| A

Proof.

Given any edge that is still not weighted, if one of the vertices has
label a, and the edge is supposed to be weighted with b, it is
enough to put b — a on the other vertex. [

V.
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Theorem

Let C, be arbitrary cycle of order n > 3. Then

n+1 whenn=2 (mod 4)

n otherwise

esg(G) =

Moreover respective labeling exists for an arbitrary choice of the
label of any vertex.

Remark: in fact, the labeling can be found for any group of order
at least es;(Cp).
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Cycles-lower bound

If n=2 (mod 4), then esg(C,) > n+ 1.
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Group Edge Irregularity Strength Results

Cycles-lower bound

Assume we can use some G of order 2(2k + 1). Obviously
G = Zy % G1. There are 2k + 1 elements (1, a) where a € G; and
all of them have to appear as the edge weights, so

> wd(e) = (1, b)

ecE(G)

For some b; € G1. On the other hand

> wd(e) =2 Z = (0, by)

ecE(G) veV(G

for some by, € Gy1. A contradiction. ]
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Group Edge Irregularity Strength Results

Cycles-upper bound

Labeling the vertices distinguishing the edge weights is in this case
equivalent to the labeling of the edges distinguishing the vertex
weights (we label the line graph, moreover m=n). We start with a
path and then label remaining edge (or vertex) with 0.
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Group Edge Irregularity Strength Results

Cycles-upper bound

Main idea: alternating paths.

O(x)=C(x)
XOLQ_""_Q ......... O é O @ O
C(x)%C(x)
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Cycles-upper bound

Case n =2k + 1: take a1,...,ak, a; € {aj, —a;}.

V, even
Oio O 2 o O % O
V, odd

Qﬁﬂ@ ......... O
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Group Edge Irregularity Strength Results

Cycles-upper bound

Case n = 4k, one involution - subgroup {0, a, 2a, 3a}, reduction:

V. o O

a 2a different parity

v. O O O« O
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Group Edge Irregularity Strength Results

Cycles-upper bound

Case n = 4k, r < n/2 involutions:

a4

2 O ......... O
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Group Edge Irregularity Strength Results

Cycles-upper bound

Case n=4k, r=n— 1 involutions, G = Zo X --- X Z»
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Group Edge Irregularity Strength Results

Cycles - upper bound

@ Case n =4k + 2, colour classes even: use G without 0.

@ Colour classes odd: we label K3 5.
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Generalized forests

A generalized tree U is a graph constructed in the following way.
Given a tree T, we choose some vertices of T and blow each of
them to a cycle (former neighbors being now connected to any of
the vertices of the cycle). The number of those vertices (cycles)
will be denoted by c(U). A union of generalized trees is called
generalized forest.
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Group Edge Irregularity Strength Results

Generalized forests

Let W be a generalized forest. Then

esg(W) < m+3 ycw2c(U) + 1.
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Generalized forests

Proof - sketch:

Label tree subgraphs and cycle subgraphs separately. In each case
we "loose” at most one possible weight (depends on the remainder
of the division by 4, and sizes of "linking” trees/paths). The
"non-linking” trees do not need additional labels (may be labeled

in the end).
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The End

Open Problem

Problem

Determine the group edge irregularity strength of arbitrary graph.
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Open Problems
Thank You

The End

Open Problem

Problem

Determine the non-zero group edge irregularity strength of arbitrary
graph (neutral element of G cannot be assigned to any vertex).
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Open Problems
Thank You

The End

Open Problem

Problem

Determine the (non-zero?) group edge irregularity strength of
arbitrary planar graph.
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The End

THANK YOU -
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The End
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